
1

MPI on the Grid

William Gropp
Mathematics and Computer Science

Argonne National Laboratory
http://www.mcs.anl.gov/~gropp

With help from
Rusty Lusk, Nick Karonis

University of Chicago Department of Energy

Outline

• Why MPI?
• MPI Point-to-point communication
• MPI Collective communication
• Performance and Debugging
• MPICHG2

2

University of Chicago Department of Energy

Why use MPI on the Grid?

• Applications already exist
• Tools exist

♦ Libraries and components, some
enabled for the Grid
• E.g., Cactus (Gordon Bell winner)

• Simplifies Development
♦ “Build locally, run globally”
♦ NSF TeraGrid plans this approach

University of Chicago Department of Energy

Why use the MPI API on
the Grid?

• MPI’s design is latency tolerant
• Separation of concerns matches

the needs of Grid infrastructure
♦ MPI itself has no “grid awareness”
♦ MPI designed to operate in many

environments
• The Grid is “just” another such

environment

3

University of Chicago Department of Energy

Specification and
Implementation

• MPI is a specification, not a particular
implementation

• MPI (the specification) has many
features that make it well-suited for
Grid computing

• There are many opportunities for
enhancing MPI implementations for use
in Grid computing
♦ Some tools already exist
♦ Great opportunities for research and papers

for EuroPVMMPI’03!

University of Chicago Department of Energy

Grid Issues

• Simplest “grid” model
♦ Multiple systems that do not share all resources

• Example: Several clusters, each with its own file system

• More complex model
♦ Multiple systems in separate administrative domains

• Example: Several clusters, each administered by a different
organization, with different access policies and resources

• (Mostly) Shared Properties
♦ Geographic separation

• From 1 to 10000km
• Each 1000km gives at least 3ms of latency

8 Typical of disk access!

♦ Process management separate from communication
• Must not assume any particular mechanism for creating

processes

4

University of Chicago Department of Energy

Issues When Programming
for the Grid

• Latency
♦ Using MPI’s send modes to hide

latency

• Hierarchical Structure
♦ Developing and using collective

communication for high, unequal
latency

• Handling Faults

University of Chicago Department of Energy

Quick review of MPI
Message passing

• Basic terms
♦ nonblocking - Operation does not wait for

completion
♦ synchronous - Completion of send requires

initiation (but not completion) of receive
♦ ready - Correct send requires a matching

receive
♦ asynchronous - communication and

computation take place simultaneously, not
an MPI concept (implementations may use
asynchronous methods)

5

University of Chicago Department of Energy

Communication Modes

• MPI provides multiple modes for sending messages:
♦ Synchronous mode (MPI_Ssend): The send does not

complete until a matching receive has begun.
♦ Buffered mode (MPI_Bsend): The user supplies a buffer to

the system for its use.
♦ Ready mode (MPI_Rsend): User guarantees that a

matching receive has been posted.
• Allows access to fast protocols
• Undefined behavior if matching receive not posted

• Non-blocking versions (MPI_Issend, etc.)
• MPI_Recv receives messages sent in any mode.

University of Chicago Department of Energy

What is message passing?
• Data transfer plus synchronization

• Requires cooperation of sender and receiver
• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

6

University of Chicago Department of Energy

Message protocols

• Message consists of “envelope” and data
♦ Envelope contains tag, communicator, length, source

information, plus impl. private data

• Short
♦ Message data (message for short) sent with

envelope

• Eager
♦ Message sent assuming destination can store

• Rendezvous
♦ Message not sent until destination oks

University of Chicago Department of Energy

Eager Protocol

Process 0

Process 1

Time

Data
Data

Data
Data

Data
Data

Data
Data

Data

• Data delivered to process 1
♦ No matching receive may exist; process 1

must then buffer and copy.

7

University of Chicago Department of Energy

Eager Features

• Reduces synchronization delays
• Simplifies programming (just

MPI_Send)
• Requires significant buffering
• May require active involvement of CPU

to drain network at receiver’s end
• May introduce additional copy (buffer to

final destination)
• Minimizes latency

University of Chicago Department of Energy

How Scaleable is Eager
Delivery?

• Buffering must be reserved for arbitrary
senders

• User-model mismatch (often expect buffering
allocated entirely to “used” connections).

• Common approach in implementations is to
provide same buffering for all members of
MPI_COMM_WORLD; this is optimizing for
non-scaleable computations

• Scalable implementations that exploit
message patterns are possible (but not widely
implemented)

8

University of Chicago Department of Energy

Rendezvous Protocol

• Envelope delivered first
• Data delivered when user-buffer

available
♦ Only buffering of envelopes required

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

University of Chicago Department of Energy

Rendezvous Features

• Robust and safe
♦ (except for limit on the number of

envelopes…)

• May remove copy (user to user direct)
• More complex programming

(waits/tests)
• May introduce synchronization delays

(waiting for receiver to ok send)
• Three-message handshake introduces

latency

9

University of Chicago Department of Energy

Short Protocol

• Data is part of the envelope
• Otherwise like eager protocol
• May be performance optimization

in interconnection system for short
messages, particularly for
networks that send fixed-length
packets (or cache lines)

University of Chicago Department of Energy

Implementing MPI_Isend

• Simplest implementation is to always use
rendezvous protocol:

♦ MPI_Isend delivers a request-to-send control
message to receiver

♦ Receiving process responds with an ok-to-send
• May or may not have matching MPI receive; only needs

buffer space to store incoming message
♦ Sending process transfers data

• Wait for MPI_Isend request
♦ wait for ok-to-send message from receiver
♦ wait for data transfer to be complete on sending side

10

University of Chicago Department of Energy

Alternatives for MPI_Isend

• Use a short protocol for small messages
♦ No need to exchange control messages
♦ Need guaranteed (but small) buffer space

on destination for short message envelope
♦ Wait becomes a no-op

• Use eager protocol for modest sized
messages
♦ Still need guaranteed buffer space for both

message envelope and eager data on
destination

♦ Avoids exchange of control messages

University of Chicago Department of Energy

Implementing MPI_Send

• Can’t use eager always because this could
overwhelm the receiving process

if (rank != 0) MPI_Send(100 MB of data)
else receive 100 MB from each process

• Would like to exploit the blocking nature (can
wait for receive)

• Would like to be fast
• Select protocol based on message size (and

perhaps available buffer space at destination)
♦ Short and/or eager for small messages
♦ Rendezvous for longer messages

11

University of Chicago Department of Energy

Implementing MPI_Rsend

• Just use MPI_Send; no advantage
for users

• Use eager always (or short if
small)
♦ Even for long messages

University of Chicago Department of Energy

Choosing MPI Alternatives

• MPI offers may ways to accomplish the
same task

• Which is best?
♦ Just like everything else, it depends on the

vendor, system architecture, computational
grid environment

♦ Like C and Fortran, MPI provides the
programmer with the tools to achieve high
performance without sacrificing portability

12

University of Chicago Department of Energy

Using MPI_Rsend to
Minimize Latency

• For high-latency environments,
avoid message handshakes
♦ Problem: Must guarantee that

sufficient space is available at
destination for the message without
exchanging messages

♦ Use algorithmic features and double
buffering to enforce guarantees

University of Chicago Department of Energy

Using MPI_Rsend

• Illustrate with simple Jacobi
example
♦ Typical data motion for many

applications
♦ Specific numeric algorithm is obsolete

13

University of Chicago Department of Energy

Jacobi Iteration

• Simple parallel data structure

l Processes exchange rows with neighbors

University of Chicago Department of Energy

Send and Recv

• Simplest use of send and recv
• MPI_Status status;

MPI_Send(xlocal+m*lrow, m, MPI_DOUBLE, up_nbr, 0,
comm);
MPI_Recv(xlocal, m, MPI_DOUBLE, down_nbr, 0,
comm, &status);
MPI_Send(xlocal+m, m, MPI_DOUBLE, down_nbr, 0,
comm);
MPI_Recv(xlocal+m*(lrow+1), m, MPI_DOUBLE,
up_nbr, 1, comm, &status);

• Receives into ghost rows

14

University of Chicago Department of Energy

What is the whole
algorithm?

1. Loop
1. Exchange ghost cells
2. Perform local computation (Jacobi

sweep)
3. Compute convergence test using

MPI_Allreduce

2. Until converged

University of Chicago Department of Energy

What is the ready-send
version of the algorithm?

1. Initialize (post nonblocking receives, barrier
or initial MPI_Allreduce)

2. Loop
1. Exchange ghost cells using MPI_Rsend (or

MPI_Irsend)
2. Perform local computation (Jacobi sweep)
3. Post nonblocking receives for next iteration
4. Compute convergence test using MPI_Allreduce

3. Until converged
1. Cancel unneeded receives with MPI_Cancel

15

University of Chicago Department of Energy

Rsend and Irecv

• void init_exchng(…)
{

MPI_Irecv(xlocal, m, MPI_DOUBLE, down_nbr, 0,
comm, &m->req[0]);

MPI_Irecv(xlocal+m*(lrow+1), m, MPI_DOUBLE,
up_nbr, 1, comm, &m->req[1]);

}
• void do_exchng(…)

{
MPI_Rsend(xlocal+m*lrow, m, MPI_DOUBLE, up_nbr, 0,

comm);
MPI_Rsend(xlocal+m, m, MPI_DOUBLE, down_nbr, 0, comm);
MPI_Waitall(2, m->req, MPI_STATUSES_NULL);

}
• Void clear_exchng(…)

{
MPI_Cancel(m->req[0]); MPI_Cancel(m->req[1]);

}

University of Chicago Department of Energy

Recommendations

• Aggregate short messages
• Structure algorithm to use MPI_Rsend or

MPI_Irsend
• Avoid MPI_Ssend
• Once more MPI implementations support

MPI_THREAD_MULTIPLE, restructure
algorithms to place MPI communication into a
separate thread

♦ MPI_Init_thread is used to request a particular level
of thread support; it returns as a parameter the
available level of thread support

16

University of Chicago Department of Energy

Research Topics

• Reduce the number of internal
messages for sending large messages
♦ “Receiver rendezvous” instead of sender

rendezvous
• Difficulties with MPI_ANY_SOURCE might be

addressed with communicator-specific attribute
values

♦ Adaptive allocation of buffer space
(increasing eager threshold), to make
Rsend approach unnecessary

♦ “Infinite window” replacements for IP/TCP
• Provide effect of multiple TCP paths but with

sensible flow control and fair resource sharing

University of Chicago Department of Energy

Using MPI Collective
Operations

• Collective routines offer a simpler
programming model

• Puts the burden of implementing the best
communication algorithm on the MPI
implementor

♦ Typical implementations not optimized (see
Tuesday’s talk on MPICH2)

♦ Few implementations are grid optimized

• I will discuss the implementation in MPICH-G2
♦ Another good implementation is MagPIE (see

http://www.cs.vu.nl/albatross/#software)

17

University of Chicago Department of Energy

Topology-Aware Collective
Team

• Original Design and Implementation
♦ Bronis R. de Supinski
♦ Nicholas T. Karonis
♦ Ian Foster
♦ William Gropp
♦ Ewing Lusk
♦ John Bresnahan

• Updated Implementation by
♦ Sebastien Lacour

University of Chicago Department of Energy

Multi-level communication
systems

• Order(s) of magnitude
performance differences
♦ Latency
♦ Bandwidth

• Examples
♦ SMP Clusters
♦ Computational grid

18

University of Chicago Department of Energy

Topology unaware use

• Best case

0

846

7 5

2

31

10

9 11
Slow
links

University of Chicago Department of Energy

Topology unaware
problem

• Worst case (all links slow)

0

10

11

94

2
1

8

6

5 3

7

19

University of Chicago Department of Energy

Topology unaware with
non-zero root

• Common case (many links slow)

1

11

10 8

59

3

2

4

0

7 6

University of Chicago Department of Energy

Topology aware solution

0

127

8 4

5

113

9

6 10

• Note that this is still not the best — see Tuesday’s MPICH2 talk

20

University of Chicago Department of Energy

Why a Multi-Level
Implementation?

• Two levels do not capture all important
systems
♦ Where to split multilevel system into two?

• Between two slowest levels?
• Between two fastest levels?
• Who determines?

• Original problem recurs at coalesced
levels

• Two level approaches can degenerate to
topology unaware solution for derived
communicators

University of Chicago Department of Energy

MPICH-G2 Topology Aware
Implementation

• Determine topology
♦ During start-up or communicator creation
♦ Hidden communicators

• Clusters
• Masters

• Perform operation “recursively” over
masters

• MPICH ADI additions
♦ MPID_Depth
♦ MPID_Clusterid

21

University of Chicago Department of Energy

Hidden Communicator
Creation

cluster[0] = copy of user level communicator;
for (i = 1; i < MPID_Depth; i++)

MPI_Comm_split (cluster[i-1],
MPID_Clusterid, 0, &cluster[i]);

cluster_rank = 0;
for (i = MPID_Depth - 1; i > 0; i--)

MPI_Comm_split (cluster[i-1],
cluster_rank, 0, &master[i]);

if (cluster_rank != 0)
MPI_Comm_free (master[i]);

MPI_Comm_rank (cluster[i], &cluster_rank);

University of Chicago Department of Energy

Broadcast algorithm

MPI_Bcast (buffer, count, datatype, 0, comm)
for (i = 1; i < MPID_Depth; i++)

MPI_Comm_rank (cluster[i], &cluster_rank);
if (cluster_rank == 0)

MPIR_LevelBcast (buffer, count,
datatype, 0, master[i], i);

Non-zero roots:
Substitute root for its master at faster levels

Replace 0 with root in level broadcast if necessary

22

University of Chicago Department of Energy

Topology aware solution

0

127

8 4

5

113

9

6 10

Hidden
Communicators

University of Chicago Department of Energy

LAN Results

• 16 tasks each on ANL SP2 and ANL O2K

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000
Message Length (Kbyte)

Ti
m

e
(s

ec
)

Default MPICH-g
Modified MPICH-g

23

University of Chicago Department of Energy

Comparative Performance
Results

• 16 tasks each on ANL SP2, O2K and SDSC SP2
♦ Three-level system

0

50

100

150

200

250

0 200 400 600 800 1000
Message Length (Kbyte)

Tim
e (

se
c)

MagPIe - Sites
Default MPICH-g
MagPIe - machines
Modified MPICH-g

University of Chicago Department of Energy

Topology Information

• MPICH-G2 exports information on
system topology to applications
programs through attributes:

• MPICHX_TOPOLOGY_DEPTHS
♦ Vector, ith value is depth of ith process

• MPICHX_TOPOLOGY_COLORS
♦ Vector of pointers to arrays; the ith vector

has length corresponding to the depth of
that process and the values are the color at
that level

24

University of Chicago Department of Energy

Accessing Topology
Information in MPICH-G2

int main (int argc, char *argv[])
{

…
int *depths, **colors;
…
rv = MPI_Attr_get(MPI_COMM_WORLD,

MPICHX_TOPOLOGY_DEPTHS, &depths, &flag1);
rv = MPI_Attr_get(MPI_COMM_WORLD,

MPICHX_TOPOLOGY_COLORS, &colors, &flag2);
if (flag1 && flag2) {

/* depths[i] is depth of ith process */
/* colors[i][j] is color of the ith process at the jth level */
…

}

University of Chicago Department of Energy

Performance and
Debugging Tools

• Not a pretty picture
• No real grid debuggers
• Few application-level performance

tools
• MPI provides a powerful hook on

which to build customized
performance and correctness
debugging tools

25

University of Chicago Department of Energy

Using PMPI routines

• PMPI allows selective replacement of
MPI routines at link time (no need to
recompile)

• Some libraries already make use of
PMPI

• Some MPI implementations have PMPI
bugs
♦ PMPI may be in a separate library that

some installations have not installed

University of Chicago Department of Energy

MPI LibraryUser Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send

26

University of Chicago Department of Energy

Using the Profiling
Interface

static int nsend = 0;

int MPI_Send(void *start, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

{
nsend++;
return PMPI_send(start, count, datatype,

dest, tag, comm);
}

University of Chicago Department of Energy

Collecting Data From the
Profiling Interface

• Use MPI_Finalize to force each
process to either collect data
(using MPI communication) or
write data to local files. Then call
PMPI_Finalize

27

University of Chicago Department of Energy

Logging and Visualization
Tools

• Upshot, Jumpshot, and MPE tools
http://www.mcs.anl.gov/mpi/mpich

• Pallas VAMPIR
http://www.pallas.com/

• Pablo http://www-
pablo.cs.uiuc.edu/Projects/Pablo/pablo.html

• Paragraph
http://www.ncsa.uiuc.edu/Apps/MCS/ParaGraph/ParaGraph.ht
ml

• Paradyn http://www.cs.wisc.edu/~paradyn

• Many other vendor tools exist
♦ e.g., xmpi (SGI and HP)

University of Chicago Department of Energy

Future Opportunities in
MPI Implementations

• I/O
♦ Exploit MPI’s sensible I/O semantics to get precise

and latency tolerant behavior

• RMA
♦ One-sided operations allow eager/ready-send

behavior for messages of all sizes

• Dynamic processes
♦ Major problem is the interaction with grid resource

schedulers

• WAN Bandwidth
♦ Multiple TCP paths (like GridFTP)
♦ Customized UDP

• May provide better congestion control, responsible
sharing of bandwidth

28

University of Chicago Department of Energy

A Few Comments on I/O

• Applications with data at one location and
compute resources at another may become a
more common class of grid codes

• POSIX I/O requires very strong coherency
♦ So strong that many systems don’t provide POSIX

semantics and instead provide ill-defined, cache-
incoherent strategies

• MPI I/O has more precisely defined semantics
that allow the MPI application to manage I/O
sensibly (at least for a running MPI code)

University of Chicago Department of Energy

ROMIO -- A Portable
Implementation of MPI-IO

• Implementation strategy: an abstract
device for I/O (ADIO)

• Tested for low overhead
• Can use any MPI implementation (MPICH,

vendor)

ADIO

MPI-IO

PVFS NFS Unix

ADIOnetwork

Others

remote I/O

29

University of Chicago Department of Energy

Two-Phase Collective I/O

• ROMIO has an optimized implementation
of two-phase collective I/O

• I/O is done in two phases: an I/O phase
and a communication phase

• In the I/O phase, data is read/written in
large chunks to minimize I/O latency

• Message-passing among compute nodes is
used to redistribute data as needed

University of Chicago Department of Energy

Current State of MPI I/O

• Only prototypes exist for grid I/O
• On the other hand, very efficient cluster

and MPP implementations exist
♦ Short term recommendation

• Use MPI I/O within a cluster and MPI
communication to move data on the Grid

♦ Long term
• Expect (or contribute to!) the development of MPI

I/O for the grid

30

University of Chicago Department of Energy

Fault Tolerance in MPI

• Can MPI be fault tolerant?
♦ What does that mean?

• Implementation vs. Specification
♦ Work to be done on the implementations
♦ Work to be done on the algorithms

• Semantically meaningful and efficient collective
operations

♦ Use MPI at the correct level
• Build libraries to encapsulate important

programming paradigms

• (Following slides are joint work with
Rusty Lusk)

University of Chicago Department of Energy

Myths and Facts

Myth: MPI behavior is defined by its implementations.
Fact: MPI behavior is defined by the Standard Document at

http://www.mpi-forum.org

Myth: MPI is not fault tolerant.
Fact: This statement is not well formed. Its truth depends on what

it means, and one can’t tell from the statement itself. More later.

Myth: All processes of MPI programs exit if any one process crashes.
Fact: Sometimes they do; sometimes they don’t; sometimes they

should; sometimes they shouldn’t. More later.

Myth: Fault tolerance means reliability.
Fact: These are completely different. Again, definitions are

required.

31

University of Chicago Department of Energy

More Myths and Facts

Myth: Fault tolerance is independent of performance.
Fact: In general, no. Perhaps for some (weak) aspects,

yes. Support for fault tolerance will negatively impact
performance.

Myth: Fault tolerance is a property of the MPI standard
(which it doesn’t have.

Fact: Fault tolerance is not a property of the
specification, so it can’t not have it. ☺

Myth: Fault tolerance is a property of an MPI
implementation (which most don’t have).

Fact: Fault tolerance is a property of a program. Some
implementations make it easier to write fault-tolerant
programs than others do.

University of Chicago Department of Energy

What is Fault Tolerance
Anyway?

• A fault-tolerant program can “survive” (in some sense
we need to discuss) a failure of the infrastructure
(machine crash, network failure, etc.)

• This is not in general completely attainable. (What if all
processes crash?)

• How much is recoverable depends on how much state
the failed component holds at the time of the crash.

♦ In many master-slave algorithms a slave holds a small
amount of easily recoverable state (the most recent
subproblem it received).

♦ In most mesh algorithms a process may hold a large
amount of difficult-to-recover state (data values for some
portion of the grid/matrix).

♦ Communication networks hold varying amount of state in
communication buffers.

32

University of Chicago Department of Energy

What Does the Standard Say
About Errors?

• A set of errors is defined, to be returned by MPI functions if
MPI_ERRORS_RETURN is set.

• Implementations are allowed to extend this set.

• It is not required that subsequent operations work after an
error is returned. (Or that they fail, either.)

• It may not be possible for an implementation to recover from
some kinds of errors even enough to return an error code
(and such implementations are conforming).

• Much is left to the implementation; some conforming
implementations may return errors in situations where other
conforming implementations abort. (See “quality of
implementation” issue in the Standard.)

♦ Implementations are allowed to trade performance against fault tolerance
to meet the needs of their users

University of Chicago Department of Energy

Some Approaches to Fault
Tolerance in MPI Programs

• Master-slave algorithms using intercommunicators
♦ No change to existing MPI semantics
♦ MPI intercommunicators generalize the well-understood two party

model to groups of processes, allowing either the master or slave
to be a parallel program optimized for performance.

• Checkpointing
♦ In wide use now
♦ Plain vs. fancy
♦ MPI-IO can help make it efficient

• Extending MPI with some new objects in order to allow a
wider class of fault-tolerant programs.

♦ The “pseudo-communicator”
• Another approach: Change semantics of existing MPI functions

♦ No longer MPI (semantics, not syntax, defines MPI)

33

University of Chicago Department of Energy

A Fault-Tolerant MPI
Master/Slave Program

• Master process comes up alone first.
♦ Size of MPI_COMM_WORLD = 1

• It creates slaves with MPI_Comm_spawn
♦ Gets back an intercommunicator for each one
♦ Sets MPI_ERRORS_RETURN on each

• Master communicates with each slave using its particular
communicator

♦ MPI_Send/Recv to/from rank 0 in remote group
♦ Master maintains state information to restart each subproblem in

case of failure
• Master may start replacement slave with MPI_Comm_spawn
• Slaves may themselves be parallel

♦ Size of MPI_COMM_WORLD > 1 on slaves
♦ Allows programmer to control tradeoff between fault tolerance

and performance

University of Chicago Department of Energy

State of Fault Tolerance

• Few MPI implementations are
robust in the presence of
communication failures (LAM/MPI
can survive some)

• This should change in the next
year

34

University of Chicago Department of Energy

MPI Implementations for
the Grid

• Use any cluster-based implementation
♦ Rely on ssh or independently started,

implementation specific demons to start processes
♦ Issues are

• Executable distribution
• Security

• Use IMPI
♦ Only a few implementations
♦ Simple security model

• Use an MPI implementation built on top of a
solid Grid infrastructure

♦ MPICH-G2

University of Chicago Department of Energy

Structure of MPICH

ADI-2
ADIO

MPICH

Existing parallel
file systemsChannel

Interface
globus2

ch_p4 Portals …

PVFS

35

University of Chicago Department of Energy

What is MPICH-G2?

• Full implementation MPI 1.2 standard
• Developed by Nick Karonis (Northern

Illinois University) and Brian Toonen
(Argonne National Laboratory)

• MPICH-based, globus2 device
• Makes extensive use of Globus services,

and therefore …
• MPICH-G2 is a grid-enabled MPI

University of Chicago Department of Energy

Globus services in MPICH-G2

• Launching application
♦ Resource Specification Language (RSL)
♦ The Dynamically-Updated Request Online Coallocator

(DUROC)
♦ Globus Resource Allocation Manager (GRAM)
♦ globusrun
♦ Globus Security Infrastructure (GSI)

• Staging
♦ Globus Access to Secondary Storage (GASS)

• TCP Messaging
♦ Globus I/O
♦ Data Conversion

36

University of Chicago Department of Energy

MPICH-G2 is Topology
Aware

• Topology-aware collective
operations

• Topology-discovery mechanisms
• Topology-aware multimethod

messaging

University of Chicago Department of Energy

Multimethod Support

vMPI

Computer A Computer B

TCP

37

University of Chicago Department of Energy

When should MPICH-G2
be used?

• Applications that are distributed by
design
♦ Scientific applications that need either more

compute power, more memory, or both

• Applications that are distributed by
nature
♦ Remote visualization applications,

client/server applications, etc.

University of Chicago Department of Energy

How to install MPICH-G2?

• Step 1 – Install Globus
♦ Acquire and install Globus v2.0 or later

(http://www.globus.org).
♦ Deploy a Globus gatekeeper (a demon) on each

machine (not node!) you intend to run.
♦ Acquire Globus identification (request from

ca@globus.org) and set it up.
♦ Add your Globus ID to Globus “gridmap” file on each

machine you intend to run.
♦ Test with “hello, world” program (from

“Troubleshooting” section of www.globus.org/mpi).

38

University of Chicago Department of Energy

How to install MPICH-G2?
(cont.)

• Step 2 – Install MPICH-G2
♦ Acquire MPICH v1.2.4 or later.
♦ setenv GLOBUS_LOCATION to your

Globus installation.
♦ Pick a Globus “flavor” (never pick

“threaded” flavor, always pick “mpi”
flavor where available).

♦ Configure MPICH with
-device=globus2, make, make install

University of Chicago Department of Energy

How to use MPICH-G2?

• Step 1 – Compiling your MPI application
♦ source the file

$GLOBUS_LOCATION/etc/globus-user-
env.csh

♦ Use MPICH-G2 compiler/linker:
• <mpichpath>bin/mpicc

• <mpichpath>bin/mpiCC
• <mpichpath>bin/mpif77
• <mpichpath>bin/mpif90

39

University of Chicago Department of Energy

How to use MPICH-G2?
(cont)

• Step 2 – Running your MPI application
♦ Use mpirun as described in manual, e.g.,

% mpirun –np 2 a.out arg1 arg2

Or
♦ Write your own Globus RSL script

(www.globus.org) and supply that only

% mpirun –globusrsl myfile.rsl

University of Chicago Department of Energy

Optional Execution-time
Specifications

• Setting IP address range to specify a
network interface

♦ setenv MPICH_GLOBUS2_USE_NETWORK_INTERFACE
<ipaddr>

• Setting TCP port range
♦ setenv GLOBUS_TCP_PORT_RANGE “min max”

• Request TCP buffer size
♦ setenv MPICH_GLOBUS2_TCP_BUFFER_SIZE nbytes

40

University of Chicago Department of Energy

MPICH-G2, Globus, and
Firewalls

• It is possible to run MPICH-G2 applications
through firewalls, but it takes sys admin
cooperation.

• Described briefly, sys admins creates a small
“hole” in the firewall called a controllable
ephemeral port .

• You use GLOBUS_TCP_PORT_RANGE to
specify that port.

• For full dicussion of Globus and firewalls, see
http://www.globus.org/security/v2.0/firewalls.
html

University of Chicago Department of Energy

Server Example

#include <stdio.h>
#include “mpi.h”

int main(int argc, char **argv)
{

int passed_num, my_id;
char port_name[MPI_MAX_PORT_NAME];
MPI_Comm newcomm;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

passed_num = 111;

41

University of Chicago Department of Energy

Server Example (con’t)

if (my_id == 0) {
MPI_Open_port(MPI_INFO_NULL, port_name);
printf("%s\n\n", port_name); fflush(stdout);

}

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0,
MPI_COMM_WORLD, &newcomm);

if (my_id == 0) {
MPI_Send(&passed_num, 1, MPI_INT, 0, 0, newcomm);
printf("after sending passed_num %d\n", passed_num);

fflush(stdout);
MPI_Close_port(port_name);

}
MPI_Finalize();
return 0;

}

University of Chicago Department of Energy

Client Example

#include <stdio.h>
#include “mpi.h”

int main(int argc, char **argv)
{

int passed_num, my_id;
MPI_Comm newcomm;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

MPI_Comm_connect(argv[1], MPI_INFO_NULL, 0,
MPI_COMM_WORLD, &newcomm);

42

University of Chicago Department of Energy

Client Example (con’t)

if (my_id == 0) {
MPI_Status status;
MPI_Recv(&passed_num, 1, MPI_INT, 0, 0, newcomm,

&status);
printf("after receiving passed_num %d\n", passed_num);
fflush(stdout);

}

MPI_Finalize();
return 0;

}

University of Chicago Department of Energy

Conclusions

• MPI the specification provides a good
programming model for the Grid

• MPI implementations are usable, but
more needs to be done
♦ MPICH-G2: www.globus.org/mpi

• Many opportunities for both using MPI
on the Grid and contributing to
developing implementations that are
“grid friendly”

